Ортогональное преобразование - определение. Что такое Ортогональное преобразование
Diclib.com
Словарь онлайн

Что (кто) такое Ортогональное преобразование - определение

ЛИНЕЙНОЕ ПРЕОБРАЗОВАНИЕ ЕВКЛИДОВА ПРОСТРАНСТВА, СОХРАНЯЮЩЕЕ СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ

ОРТОГОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ         
линейное преобразование евклидова векторного пространства, сохраняющее неизменными длины или (что эквивалентно этому) скалярные произведения векторов.
Ортогональное преобразование         

Линейное преобразование евклидова векторного пространства, сохраняющее неизменным длины или (что эквивалентно этому) скалярное произведение векторов. В ортогональном и нормированном базисе О. п. соответствует Ортогональная матрица. О. п. образуют группу (См. Группа) - т.н. группу вращений данного евклидова пространства вокруг начала координат. В трёхмерном пространстве О. п. сводится к повороту на некоторый угол вокруг некоторой оси, проходящей через начало координат О, если определитель соответствующей ортогональной матрицы равен +1. Если же этот определитель равен -1, то поворот дополняется зеркальным отражением относительно плоскости, проходящей через О и перпендикулярной оси поворота. В двумерном пространстве, т. е. в плоскости, О. п. определяет поворот на некоторый угол вокруг начала координат О или зеркальное отражение относительно некоторой прямой, проходящей через О. Используется О. п. при приведении к главным осям квадратичной формы (См. Квадратичная форма). См. также Матрица, Векторное пространство.

Ортогональное преобразование         
Ортогональное преобразование — линейное преобразование A евклидова пространства L, сохраняющее длины или (что эквивалентно) скалярное произведение векторов. Это означает, что для любых двух векторов x,y \in L выполняется равенство

Википедия

Ортогональное преобразование

Ортогональное преобразование — линейное преобразование A {\displaystyle A} евклидова пространства L {\displaystyle L} , сохраняющее длины или (что эквивалентно) скалярное произведение векторов. Это означает, что для любых двух векторов x , y L {\displaystyle x,y\in L} выполняется равенство

A ( x ) , A ( y ) = x , y , {\displaystyle \langle A(x),\,A(y)\rangle =\langle x,\,y\rangle ,}

где треугольными скобками обозначено скалярное произведение x , y {\displaystyle \langle x,\,y\rangle } в пространстве L {\displaystyle L} .